Langsung ke konten utama

Pertidaksamaan Bilangan Real (Riil)

Sifat-Sifat Pertidaksamaan

  1. Tanda pertidaksamaan tidak berubah jika kedua ruas ditambah atau dikurangi dengan bilangan yang sama


a < b maka:
a + c < b + c
a – c < b – c
  1. Tanda pertidaksamaan tidak berubah jika kedua ruas dikali atau dibagi dengan bilangan positif yang sama
Jika a < b, dan c adalah bilangan positif, maka:
a.c < b.c
a/b < b/c
  1. Tanda pertidaksamaan akan berubah jika kedua ruas pertidaksamaan dikali atau dibagi dengan bilangan negatif yang sama
Jika a < b, dan c adalah bilangan negatif, maka:
a.c > b.c
a/c > b/c
  1. Tanda pertidaksamaan tidak berubah jika kedua ruas positif masing-masing dikuadratkan
Jika a < b; a dan b sama-sama positif, maka: a2 < b2

Pertidaksamaan Linear

→ Variabelnya berpangkat 1

Penyelesaian:

Suku-suku yang mengandung variabel dikumpulkan di ruas kiri, dan konstanta diletakkan di ruas kanan

Contoh:

Pertidaksamaan Kuadrat


→ Variabelnya berpangkat 2

Penyelesaian:

  1. Ruas kanan dibuat menjadi nol
  2. Faktorkan
  3. Tentukan harga nol, yaitu nilai variabel yang menyebabkan nilai faktor sama dengan nol
  4. Gambar garis bilangannya
Jika tanda pertidaksamaan ≥ atau ≤, maka harga nol ditandai dengan titik hitam •
Jika tanda pertidaksamaan > atau <, maka harga nol ditandai dengan titik putih °
  1. Tentukan tanda (+) atau (–) pada masing-masing interval di garis bilangan. Caranya adalah dengan memasukkan salah satu bilangan pada interval tersebut pada persamaan di ruas kiri.
Tanda pada garis bilangan berselang-seling, kecuali jika ada batas rangkap (harga nol yang muncul 2 kali atau sebanyak bilangan genap untuk pertidaksamaan tingkat tinggi), batas rangkap tidak merubah tanda
  1. Tentukan himpunan penyelesaian
→ jika tanda pertidaksamaan > 0 berarti daerah pada garis bilangan yang diarsir adalah yang bertanda (+)
→ jika tanda  pertidaksamaan < 0 berarti daerah pada garis bilangan yang diarsir adalah yang bertanda (–)

Contoh:

(2x – 1)2 ≥ (5x – 3).(x – 1) – 7

4x2 – 4x + 1 ≥ 5x2 – 5x – 3x + 3 – 7

4x2 – 4x + 1 – 5x2 + 5x + 3x – 3 + 7 ≥ 0
–x2 + 4x + 5 ≥ 0
–(x2 – 4x – 5) ≥ 0
–(x – 5).(x + 1) ≥ 0
Harga nol: x – 5 = 0 atau x + 1 = 0
x = 5 atau x = –1
Garis bilangan:

  • menggunakan titik hitam karena tanda pertidaksamaan ≥
  • jika dimasukkan x = 0 hasilnya positif
  • karena 0 berada di antara –1 dan 5, maka daerah tersebut bernilai positif, di kiri dan kanannya bernilai negatif
  • karena tanda pertidaksamaan ≥ 0, maka yang diarsir adalah yang positif

Jadi penyelesaiannya: {x | –1 ≤ x ≤ 5}

Pertidaksamaan Tingkat Tinggi

→ Variabel berpangkat lebih dari 2
Penyelesaian sama dengan pertidaksamaan kuadrat
Contoh:
(2x + 1)2.(x2 – 5x + 6) < 0
(2x + 1)2.(x – 2).(x – 3) < 0
Harga nol: 2x + 1 = 0 atau x – 2 = 0 atau x – 3 = 0
x = –1/2 atau x = 2 atau x = 3
Garis bilangan:
  • menggunakan titik putih karena tanda pertidaksamaan <
  • jika dimasukkan x = 0 hasilnya positif
  • karena 0 berada di antara –1/2 dan 2, maka daerah tersebut bernilai positif
  • karena –1/2 adalah batas rangkap (–1/2 muncul sebanyak 2 kali sebagai harga nol, jadi –1/2 merupakan batas rangkap), maka di sebelah kiri –1/2 juga bernilai positif
  • selain daerah yang dibatasi oleh batas rangkap, tanda positif dan negatif berselang-seling
  • karena tanda pertidaksamaan ³ 0, maka yang diarsir adalah yang positif

Jadi penyelesaiannya: {x | 2 < x < 3}

Pertidaksamaan Pecahan

→ ada pembilang dan penyebut
Penyelesaian:
  1. Ruas kanan dijadikan nol
  2. Samakan penyebut di ruas kiri
  3. Faktorkan pembilang dan penyebut (jika bisa)
  4. Cari nilai-nilai variabel yang menyebabkan pembilang dan penyebutnya sama dengan nol (harga nol untuk pembilang dan penyebut)
  5. Gambar garis bilangan yang memuat semua nilai yang didapatkan pada langkah 4
Apapun tanda pertidaksamaannya, harga nol untuk penyebut selalu digambar dengan titik putih (penyebut suatu pecahan tidak boleh sama dengan 0 agar pecahan tersebut mempunyai nilai)
  1. Tentukan tanda (+) atau (–) pada masing-masing interval
Contoh 1:

Harga nol pembilang: –5x + 20 = 0
–5x = –20 → x = 4
Harga nol penyebut: x – 3 = 0 → x = 3
Garis bilangan:
→ x = 3 digambar menggunakan titik putih karena merupakan harga nol untuk penyebut

Jadi penyelesaiannya: {x | 3 < x ≤ 4}

Contoh 2:

Harga nol pembilang: x – 2 = 0 atau x + 1 = 0
x = 2 atau x = –1
Harga nol penyebut: tidak ada, karena penyebut tidak dapat difaktorkan dan jika dihitung nilai diskriminannya:
D = b2 – 4.a.c = 12 – 4.1.1 = 1 – 4 = –3
Nilai D-nya negatif, sehingga persamaan tersebut tidak mempunyai akar real
(Catatan: jika nilai D-nya tidak negatif, gunakan rumus abc untuk mendapat harga nol-nya)
Garis bilangan:

Jadi penyelesaiannya: {x | x ≤ –1 atau x ≥ 2}

Komentar

Postingan populer dari blog ini

Interaksi Manusia & Komputer - Kebergunaan

Hallo! Hai teman teman kembali lagi dengan kami, Kelompok 1 yang beranggotakan : Brylian   Pratama  (201931034) Muh . Adrian  Saputra  (201931035) Raihan Faiz (201931213) Praylin   Simarmata  (201931214) Siti  Aisyah   Ramadhana  (201931215) Seperti yang sebelumnya kami ingin menyajikan resume kami tentang kajian materi di bawah ini : Jangan lupa ditonton ya!! Langsung saja kita mulai..... Kebergunaan Loncat ke navigasi Loncat ke pencarian Kebergunaan  ( bahasa Inggris :  usability ) adalah suatu istilah yang menunjukkan kemudahan  manusia  untuk menggunakan suatu  alat  atau objek buatan manusia lainnya untuk mencapai tujuan tertentu. Kebergunaan juga dapat merujuk pada metode pengukuran kebergunaan dan kajian prinsip di balik persepsi efisiensi dan keluwesan suatu objek. Dalam  interaksi manusia komputer  dan  ilmu komputer , kebergunaan biasanya merujuk pada...

Limit Bilangan Euler

Pengertian Bilangan Euler ( e ) adalah bilangan irasional yang bernilai 2,718281828… (dan seterusnya). Bilangan ini dinamakan bilangan Euler sebagai penghargaan kepada ahli matematika Swiss yang menemukannya, Leonhard Euler. Kita akan melihat kilas balik sejarah bilangan Euler dan mengapa bilangan ini sangat penting dalam matematika. Dalam matematika, bilangan atau konstanta yang terkenal biasanya terkait dengan geometri atau tata ruang. Sebagai contoh, bilangan π berasal dari rasio keliling dan diameter lingkaran (π = keliling/diameter). Namun, tidak demikian dengan bilangan Euler ( e ). Bilangan Euler tidak berdasarkan kepada bentuk atau geometri, tetapi berdasarkan laju perubahan. Hal lain yang menarik dari bilangan  e  adalah bila kita menggambar kurva  y  =  e x , nilai luas di bawah kurva pada rentang  x   = -∞ hingga  x  =  x 1 akan bernilai  e x 1 . Perhatikan gambar, kita misalkan  x 1 = 1, maka luasan di...

Hardlink dan Softlink

 Symbolic Link Tak hanya untuk membuat shortcut dan manajemen file pada sistem operasi, seperti Linux, Symbolic Link juga dapat digunakan dalam pembuatan berbagai lokasi  primary user folder , misalnya Documents, Pictures, Downloads, dan lainnya! Cara kerja Symbolic Link seperti string yang membuat pathways untuk berbagai file, folder, dan direktori pada sistem komputer. Symbolic Link Linux akan membuat dan menyimpan berbagai file di tempat berbeda yang merujuk pada satu file. Dengan menyimpan semua dokumen yang spesifik ke dalam satu command, maka akan semakin efisien. Link tersebut disimpan pada mainframe. Jadi, walaupun file aslinya dihapus, Anda masih memiliki sebagian besar cadangannya. Symbolic link akan membuat invalid link pathways untuk menyimpan serpihan informasi sesuai kebutuhan pengguna. Ada 2 bentuk Symbolic Link, yaitu Hard dan Soft Hardlink Sebuah file atau lebih yang dihasilkan dari penggandaan / cloning file (biasanya menggunakan perintah ln) dimana file ini...