Pertidaksamaan ialah kalimat terbuka yang menggunakan tanda ketidaksamaan (<, >, ≤, ≥) dan mengandung variabel. Secara umum pertidaksamaan merupakan cara untuk menyatakan suatu selang atau interval. Tanda “<” dan “>” menyatakan selang terbuka dan pada garis bilangan digambarkan dengan noktah kosong( ). Pertidaksamaan nilai mutlak merupakan jenis pertidaksamaan yang mengandung nilai mutlak. Nilai mutlak menghitung jarak suatu angka dari 0—misal, x. mengukur jarak x dari nol.
Persamaan nilai mutlak merupakan sebuah persamaan yang selalu bernilai positif.Pertidaksamaan nilai mutlak ialah sebuah perbandingan ukuran dua objek atau lebih yang selalu bernilai positif.
Rumus Pertidaksamaan Nilai Mutlak
Nilai mutlak suatu bilangan real x ialah jarak antara bilangan itu dengan nol pada garis bilangan. Dan digambarkan dengan │x│. Secara formal nilai mutlak didefinisikan sebagai berikut :
Pengantar Nilai Mutlak
Sifat-Sifat Pertidaksamaan Nilai Mutlak
Untuk mengambil nilai mutlak dari persamaan nilai mutlak cukup mudah. Dengan mengikuti 2 aturan penting seperti yang telah dibahas sebelumnya sudah dapat menentukan nilai mutlaknya. Jadi, nilainya akan positif jika fungsi di dalam tanda mutlak lebih dari nol. Dan akan bernilai negatif kalau fungsi di dalam tanda mutlak kurang dari nol.
Dalam pertidaksamaan nilai mutlak tidak cukup dengan cara tersebut. Ada beberapa pertidaksamaan aljabar yang ekuivalen dengan pertidaksamaan nilai mutlak. Ataupun dapat disebut saja sebagai sifat pertidaksamaan nilai mutlak.
Sifat inilah yang dapat dipakai untuk menentukan himpunan penyelesaian pada soal-soal pertidaksamaan nilai mutlak yang diberikan.
Sifat-sifat pertidaksamaan nilai mutlak adalah sebagai berikut :
Sifat-sifat pertidaksamaan nilai mutlak
Dalam menyelesaikan pertidaksamaan nilai mutlak, selain perlu mengetahui sifa-sifat yang telah diberikan di atas, kita juga perlu kemampuan untuk menguasai cara oprasi bentuk aljabar. Cara dasar dalam mengoperasikan suatu bilangan dan variabel.
Pengertian Relasi berarti hubungan antara (domain) daerah asal dan (kodomain) daerah kawan, sedangkan fungsi adalah hubungan yang memasangkan anggota daerah asal dengan tepat satu anggota daerah lawan dengan aturan khusus. Berikut adalah bentuk diagram suatu fungsi tertentu: Dari gambar di atas dapat kita tahu bahwa diagram tersebut merupakan diagram relasi dan fungsi dari dua buah himpunan yaitu A = {a 1 , a 2 , a 3 , a 4 } dan B = {b 1 , b 2 , b 3 , b 4 }. Grafik fungsi Selain dibuat diagram seperti yang dijelaskan sebelumnya, sebuah fungsi dapat diperlihatkan menggunakan grafik tertentu. Grafik fungsi sendiri adalah sebuah representasi visual atau penggambaran dari sebuah fungsi pada diagram x-y. Grafik fungsi dapat berfungsi sebagai alat yang membantu untuk memudahkan seseorang dalam memahami suatu fungsi. Untuk menggambar sebuah grafik fungsi, cara termudah adalah memasukkan nilai x (daerah asal) pada f(x) atau y (daerah kawannya). Grafik Fungsi Kuad
Hallo! Hai teman teman kembali lagi dengan kami, Kelompok 1 yang beranggotakan : Brylian Pratama (201931034) Muh . Adrian Saputra (201931035) Raihan Faiz (201931213) Praylin Simarmata (201931214) Siti Aisyah Ramadhana (201931215) Seperti yang sebelumnya kami ingin menyajikan resume kami tentang kajian materi di bawah ini : Jangan lupa ditonton ya!! Langsung saja kita mulai..... Kebergunaan Loncat ke navigasi Loncat ke pencarian Kebergunaan ( bahasa Inggris : usability ) adalah suatu istilah yang menunjukkan kemudahan manusia untuk menggunakan suatu alat atau objek buatan manusia lainnya untuk mencapai tujuan tertentu. Kebergunaan juga dapat merujuk pada metode pengukuran kebergunaan dan kajian prinsip di balik persepsi efisiensi dan keluwesan suatu objek. Dalam interaksi manusia komputer dan ilmu komputer , kebergunaan biasanya merujuk pada keluwesan dan kejelasan interaksi dengan hasil rancangan suatu program komputer atau
Pengertian Bilangan Euler ( e ) adalah bilangan irasional yang bernilai 2,718281828… (dan seterusnya). Bilangan ini dinamakan bilangan Euler sebagai penghargaan kepada ahli matematika Swiss yang menemukannya, Leonhard Euler. Kita akan melihat kilas balik sejarah bilangan Euler dan mengapa bilangan ini sangat penting dalam matematika. Dalam matematika, bilangan atau konstanta yang terkenal biasanya terkait dengan geometri atau tata ruang. Sebagai contoh, bilangan π berasal dari rasio keliling dan diameter lingkaran (π = keliling/diameter). Namun, tidak demikian dengan bilangan Euler ( e ). Bilangan Euler tidak berdasarkan kepada bentuk atau geometri, tetapi berdasarkan laju perubahan. Hal lain yang menarik dari bilangan e adalah bila kita menggambar kurva y = e x , nilai luas di bawah kurva pada rentang x = -∞ hingga x = x 1 akan bernilai e x 1 . Perhatikan gambar, kita misalkan x 1 = 1, maka luasan di bawah kurva berwarna merah muda bernilai e . Selain itu, gradi
Komentar
Posting Komentar