Langsung ke konten utama

Limit Bilangan Euler

Pengertian
Bilangan Euler (e) adalah bilangan irasional yang bernilai 2,718281828… (dan seterusnya). Bilangan ini dinamakan bilangan Euler sebagai penghargaan kepada ahli matematika Swiss yang menemukannya, Leonhard Euler. Kita akan melihat kilas balik sejarah bilangan Euler dan mengapa bilangan ini sangat penting dalam matematika.
Dalam matematika, bilangan atau konstanta yang terkenal biasanya terkait dengan geometri atau tata ruang. Sebagai contoh, bilangan π berasal dari rasio keliling dan diameter lingkaran (π = keliling/diameter). Namun, tidak demikian dengan bilangan Euler (e). Bilangan Euler tidak berdasarkan kepada bentuk atau geometri, tetapi berdasarkan laju perubahan.
Hal lain yang menarik dari bilangan e adalah bila kita menggambar kurva y = ex, nilai luas di bawah kurva pada rentang  = -∞ hingga x1 akan bernilai ex1. Perhatikan gambar, kita misalkan x1 = 1, maka luasan di bawah kurva berwarna merah muda bernilai e. Selain itu, gradien garis singgung kurva pada titik x1 juga bernilai ex1. Perhatikan garis biru pada gambar, yang merupakan garis singgung y = ex di titik x = 1. Gradien garis singgung ini bernilai e. Ini dapat dilihat dari bertambahnya nilai x sebanyak 1 satuan, maka nilai y naik sebanyak e satuan. Oleh karenanya, fungsi ex menjadi “bahasa” natural untuk menggambarkan pertumbuhan karena luas kurva dan gradiennya juga bernilai ex. Dari situ, bilangan Euler dikenal memiliki nama lain, yakni bilangan natural.
Bilangan natural (e) memiliki besar
e = 2,71828182845904523536028747135……
Bilangan ini bisa diperoleh dari

Jika e disubtitusi dengan 1 maka
Nilai e juga
Akan tetapi, sebenarnya bilangan natural didefinisikan sebagai
contoh soal
Contoh 1
Tentukan
 \displaystyle \lim_{x\rightarrow \infty} \left(\frac{x-1}{x+1}\right)^{3x-2}.
Penyelesaian.
\[\displaystyle \lim_{x\rightarrow \infty} \left(\frac{x-1}{x+1}\right)^{3x-2}=\displaystyle \lim_{x\rightarrow \infty} \left(1+\frac{-2}{x+1}\right)^{3x-2}.\]
Apabila berturut-turut diambil
 f(x)=\displaystyle \frac{-2}{x+1} dan g(x)=3x-2
 maka
\[\displaystyle \lim_{x\rightarrow \infty}f(x)=0~\text{dan}~\displaystyle \lim_{x\rightarrow \infty}g(x)=\infty.\]

Berdasarkan teorema di atas diperoleh  
\begin{equation*} \begin{split} \displaystyle \lim_{x\rightarrow \infty} \left(\frac{x-1}{x+1}\right)^{3x-2}&=\displaystyle \lim_{x\rightarrow \infty} \left(1+\frac{-2}{x+1}\right)^{3x-2}\\ &=\displaystyle e^{\displaystyle\lim_{x\rightarrow \infty}\frac{-2}{x+1}\cdot (3x-2)}\\ &=e^{-6} \end{split}. \end{equation*}

Contoh 2. 
Tentukan
 \displaystyle \lim_{x\rightarrow 1} x^{\frac{x}{x^{2}-3x+2}}.
Penyelesaian.
\[\displaystyle \lim_{x\rightarrow 1} x^{\frac{x}{x^{2}-3x+2}}=\displaystyle \lim_{x\rightarrow 1}\left(1+(x-1)\right)^{\frac{x}{(x-1)(x-2)}}.\]  
Apabila diambil f(x)=(x-1) dan g(x)=\displaystyle \frac{x}{(x-1)(x-2)}
maka

\[\displaystyle \lim_{x\rightarrow 1}f(x)=0~\text{dan}~\displaystyle \lim_{x\rightarrow 1}g(x)=\pm\infty (\displaystyle \lim_{x\rightarrow 1^{-}}g(x)=\infty~\text{dan}~\displaystyle \lim_{x\rightarrow 1^{+}}g(x)=-\infty).\]
Berdasarkan teorema di atas diperoleh
\begin{equation*} \begin{split} \displaystyle \lim_{x\rightarrow 1} x^{\frac{x}{x^{2}-3x+2}}&=\displaystyle \lim_{x\rightarrow 1}\left(1+(x-1)\right)^{\frac{x}{(x-1)(x-2)}}\\ &=\displaystyle e^{\displaystyle \lim_{x\rightarrow 1}(x-1)\cdot\frac{x}{(x-1)(x-2)}}\\ &\displaystyle e^{\displaystyle \lim_{x\rightarrow 1}\frac{x}{x-2}}\\ &=e^{-1} \end{split} \end{equation*}

Komentar

Postingan populer dari blog ini

Fungsi dan Grafik Fungsi

Pengertian Relasi berarti hubungan antara (domain) daerah asal dan (kodomain) daerah kawan, sedangkan fungsi adalah hubungan yang memasangkan anggota daerah asal dengan tepat satu anggota daerah lawan dengan aturan khusus. Berikut adalah bentuk diagram suatu fungsi tertentu: Dari gambar di atas dapat kita tahu bahwa diagram tersebut merupakan diagram relasi dan fungsi dari dua buah himpunan yaitu A = {a 1 , a 2 , a 3 , a 4 } dan B = {b 1 , b 2 , b 3 , b 4 }. Grafik fungsi Selain dibuat diagram seperti yang dijelaskan sebelumnya, sebuah fungsi dapat diperlihatkan menggunakan grafik tertentu. Grafik fungsi sendiri adalah sebuah representasi visual atau penggambaran dari sebuah fungsi pada diagram x-y. Grafik fungsi dapat berfungsi sebagai alat yang membantu untuk memudahkan seseorang dalam memahami suatu fungsi. Untuk menggambar sebuah grafik fungsi, cara termudah adalah memasukkan nilai x (daerah asal) pada f(x) atau y (daerah kawannya). Grafik Fungsi Kuad

Interaksi Manusia & Komputer - Kebergunaan

Hallo! Hai teman teman kembali lagi dengan kami, Kelompok 1 yang beranggotakan : Brylian   Pratama  (201931034) Muh . Adrian  Saputra  (201931035) Raihan Faiz (201931213) Praylin   Simarmata  (201931214) Siti  Aisyah   Ramadhana  (201931215) Seperti yang sebelumnya kami ingin menyajikan resume kami tentang kajian materi di bawah ini : Jangan lupa ditonton ya!! Langsung saja kita mulai..... Kebergunaan Loncat ke navigasi Loncat ke pencarian Kebergunaan  ( bahasa Inggris :  usability ) adalah suatu istilah yang menunjukkan kemudahan  manusia  untuk menggunakan suatu  alat  atau objek buatan manusia lainnya untuk mencapai tujuan tertentu. Kebergunaan juga dapat merujuk pada metode pengukuran kebergunaan dan kajian prinsip di balik persepsi efisiensi dan keluwesan suatu objek. Dalam  interaksi manusia komputer  dan  ilmu komputer , kebergunaan biasanya merujuk pada keluwesan dan kejelasan interaksi dengan hasil rancangan suatu  program komputer  atau