Langsung ke konten utama

Titik Belok

Pengertian titik belok fungsi adalah titik dimana terjadi perubahan kecekungan fungsi. Sementara kecekungan fungsi adalah bentuk grafik fungsi tersebut memiliki kecendrungan cekung ke arah mana. Dalam hal ini sebuah fungsi polinom memiliki 2 kemungkinan kecekungan. Cekung ke atas dan cekung ke bawah.
gambar fungsi cekung ke atas, cekung ke bawah titik stasioner
Garis merah Cekung Ke atas, Garis Hijau Cekung ke Bawah
Bagaimana cara menentukan fungsi cekung ke atas, fungsi cekung ke bawah dan titik belok? Menyelesaikan persoalan tersebut kita akan gunakan turunan ke dua dari fungsi yang diketahui. Berikut langkah untuk menentukan fungsi cekung ke atas, fungsi cekung ke bawah dan titik belok.

Langkah Menentukan Kecekungan Fungsi dan Titik Belok
Misalkan kita memiliki fungsi f(x),
  1. Tentukan turunan ke-dua fungsi: f"(x). 
  2. Carilah nilai x, ketika f"(x)=0.
  3. Nilai x pada langkah ke-dua, disubtitusikan ke f(x). (x, f(x)) adalah titik belok.
  4. Ambil sebarang nilai a dan b dimana a<x dan b> x. Subtitusikan ke f"(x). Jika nilainya positif = cekung ke atas. Jika nilai negatif = ke bawah.
Uji Kecekungan Fungsi
Interval kecekungan suatu fungsi dapat ditentukan dari turunan kedua fungsi tersebut.
  1. f(x) cekung ke atas pada setiap nilai x yang memenuhi f ''(x) > 0
  2. f(x) cekung ke bawah pada setiap nilai x yang memenuhi f ''(x) < 0

Contoh 1
Tentukan interval-interval f(x)=x36x22x+1 cekung ke atas dan cekung ke bawah!
Jawab :
f '(x) =  3x2 − 12x
f ''(x) = 6x − 12
f(x) cekung ke atas ⇒ f ''(x) > 0
6x − 12 > 0
x > 2
f(x) cekung ke bawah ⇒ f ''(x) < 0
6x − 12 < 0
x < 2
Jadi f(x) cekung ke atas pada interval x > 2 dan f(x) cekung ke bawah pada interval x < 2.

Titik Belok Fungsi
Misalkan f(x) diferensiabel dua kali pada x = a dan f ''(a) = 0.
Titik (a, f(a)) disebut titik belok fungsi f jika di sekitar titik tersebut terjadi perubahan kecekungan dari cekung ke atas menjadi cekung ke bawah atau sebaliknya, dapat ditulis :
Untuk x < a maka f ''(x) > 0 (cekung ke atas)
Untuk x > a maka f ''(x) < 0 (cekung ke bawah)
atau
Untuk x < a maka f ''(x) < 0 (cekung ke bawah)
Untuk x > a maka f ''(x) > 0 (cekung ke atas)

Contoh 2
Titik belok dari f(x) = x3 − 3x2 + 4x adalah...
Jawab :
f '(x) = 3x2 − 6x + 4
f ''(x) = 6x − 6
f ''(x) = 0
6x − 6 = 0
x = 1
f(1) = (1)3 − 3(1)2 + 4(1) = 2
⇒ (1, 2)

Karena terjadi perubahan kecekungan di x = 1, maka titik (1, 2) adalah titik belok fungsi f.

Contoh 3
Tentukan titik belok dari fungsi f(x)=x44x3+6x2+1
Jawab :
f '(x) = 4x3 − 12x2 + 12x
f ''(x) = 12x2 − 24x + 12
f ''(x) = 0
12x2 − 24x + 12 = 0
x2 − 2x + 1 = 0
(x −1)(x − 1) = 0
x = 1
f(1) = (1)4 − 4(1)+ 6(1)+ 1 = 4
⇒ (1, 4)

Karena tidak terjadi perubahan kecekungan pada x = 1, maka titik (1, 4) bukan titik belok fungsi f atau dengan kata lain fungsi tersebut tidak mempunyai titik belok.

Komentar

Postingan populer dari blog ini

Fungsi dan Grafik Fungsi

Pengertian Relasi berarti hubungan antara (domain) daerah asal dan (kodomain) daerah kawan, sedangkan fungsi adalah hubungan yang memasangkan anggota daerah asal dengan tepat satu anggota daerah lawan dengan aturan khusus. Berikut adalah bentuk diagram suatu fungsi tertentu: Dari gambar di atas dapat kita tahu bahwa diagram tersebut merupakan diagram relasi dan fungsi dari dua buah himpunan yaitu A = {a 1 , a 2 , a 3 , a 4 } dan B = {b 1 , b 2 , b 3 , b 4 }. Grafik fungsi Selain dibuat diagram seperti yang dijelaskan sebelumnya, sebuah fungsi dapat diperlihatkan menggunakan grafik tertentu. Grafik fungsi sendiri adalah sebuah representasi visual atau penggambaran dari sebuah fungsi pada diagram x-y. Grafik fungsi dapat berfungsi sebagai alat yang membantu untuk memudahkan seseorang dalam memahami suatu fungsi. Untuk menggambar sebuah grafik fungsi, cara termudah adalah memasukkan nilai x (daerah asal) pada f(x) atau y (daerah kawannya). Grafik Fungsi Kuad...

Hardlink dan Softlink

 Symbolic Link Tak hanya untuk membuat shortcut dan manajemen file pada sistem operasi, seperti Linux, Symbolic Link juga dapat digunakan dalam pembuatan berbagai lokasi  primary user folder , misalnya Documents, Pictures, Downloads, dan lainnya! Cara kerja Symbolic Link seperti string yang membuat pathways untuk berbagai file, folder, dan direktori pada sistem komputer. Symbolic Link Linux akan membuat dan menyimpan berbagai file di tempat berbeda yang merujuk pada satu file. Dengan menyimpan semua dokumen yang spesifik ke dalam satu command, maka akan semakin efisien. Link tersebut disimpan pada mainframe. Jadi, walaupun file aslinya dihapus, Anda masih memiliki sebagian besar cadangannya. Symbolic link akan membuat invalid link pathways untuk menyimpan serpihan informasi sesuai kebutuhan pengguna. Ada 2 bentuk Symbolic Link, yaitu Hard dan Soft Hardlink Sebuah file atau lebih yang dihasilkan dari penggandaan / cloning file (biasanya menggunakan perintah ln) dimana file ini...

Limit Fungsi

Pengertian Limit fungsi adalah salah satu konsep mendasar dalam kalkulus dan analisis, tentang kelakuan suatu fungsi mendekati titik masukan tertentu. Suatu fungsi memetakan keluaran f(x) untuk setiap masukan x. Fungsi tersebut memiliki limit L pada titik masukan p bila f(x) “dekat” pada L ketika x dekat pada p. Limit  f(x)  mendekati  c  sama dengan  L , ditulis: jika untuk setiap  x  yang cukup dekat dengan  c  tetapi  x≠c ,  f(x)  mendekati  L . Sifat Limit Fungsi Jika  n  adalah  bilangan bulat positif ,  k  konstanta ,  f  dan  g   ialah  fungsi-fungsi yang memiliki limit di  c , maka berlaku teorema-teorema berikut. Mencari Nilai Limit Metode substitusi Metode ini dilakukan dengan mensubstitusi langsung nilai kedalam fungsi  f(x) . Contoh Soal: Metode pemfaktoran Jika pada metode substitusi...